Skip to main content

Research Overview

The ProCan Cancer Data Science Group, led by Dr. Qing Zhong, aims to develop novel computational tools and sophisticated machine learning algorithms to achieve ProCan's goals.

ProCan (the ACRF International Centre for the Proteome of Human Cancer) is a world-first initiative developed and launched in September 2016 by Professors Phil Robinson and Roger Reddel, and established with a $10 million grant from the Australian Cancer Research Foundation (ACRF). Equipped with six SCIEX mass spectrometers and a super computer (700TB / 480 cores), ProCan processes tumour samples through a proteomic method, SWATH-MS, which allows fast mass spectrometric conversion of small amounts of tissue (biopsy level) into a single, permanent digital file representing the quantitative proteome of the sample. One of the goals of ProCan is to measure thousands of proteins in about 70,000 cancers of all types with known treatment outcome and correlate tumour proteotypes with clinical phenotypes.

Lab Head

Qing Zhong

Qing Zhong

Group Leader, ProCan Cancer Data Science
Available for Student Supervision

Group Leader, ProCan Cancer Data Science

View full bio

Team Members

Rebecca Poulous
Rebecca Poulos
Data Scientist
Srikath Manda
Srikanth S. Manda
Data Scientist
AKM Azad
AKM Azad
Data Scientist
Simon Cai
Zhaoxiang (Simon) Cai
PhD Student
Mohashin Pathan
Data Scientist
Zainab Noor
Senior Research Officer

Research Projects

Other major focuses of the ProCan Cancer Data Science Group are: big proteogenomic data mining and management; the genome-proteome association analysis and multi-omic data integration for studying cancer; development of advanced statistical tools to account for batch effects caused by large-scale, high throughput proteomics, and implementation of big data-driven, evidence-based computational tools to achieve predictive, preventive, personalised medicine.

We are currently recruiting postdoctoral fellows and staff scientists. We kindly invite interested applicants to submit their CV and Cover Letter to Dr. Qing Zhong.

We are also on the lookout for PhD, Honours or Master students willing to join the Cancer Data Science Group.


PIONEER: Pipeline for Generating High-Quality Spectral Libraries for DIA-MS Data

Srikanth S. Manda, Zainab Noor, Peter G. Hains, Qing Zhong (2021).

Improved identification and quantification of peptides in mass spectrometry data via chemical and random additive noise elimination (CRANE).

Akila J Seneviratne, Sean Peters, David Clarke, Michael Dausmann, Michael Hecker, Brett Tully, Peter G Hains and Qing Zhong (2021). Bioinformatics btab563.

Strategies to enable large-scale proteomics for reproducible research.

Rebecca C. Poulos, Peter G. Hains, Rohan Shah, Natasha Lucas, Dylan Xavier, Srikanth S. Manda, Asim Anees, Jennifer M. S. Koh, Sadia Mahboob, Max Wittman, Steven G. Williams, Erin K. Sykes, Michael Hecker, Michael Dausmann, Merridee A. Wouters, Keith Ashman, Jean Yang, Peter J. Wild, Anna deFazio, Rosemary L. Balleine, Brett Tully, Ruedi Aebersold, Terence P. Speed, Yansheng Liu, Roger R. Reddel, Phillip J. Robinson & Qing Zhong. Nat Commun 11, 3793 (2020). PMID: 32732981

Addressing the challenges of high-throughput cancer tissue proteomics for clinical application: ProCan((R)).

Tully,B., Balleine,R.L., Hains,P.G., Zhong,Q., Reddel,R.R. & Robinson,P.J. (2019) Proteomics 2019, e1900109, PMID:31321850.

Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4.

Dai X, Gan W, Li X, Wang S, Zhang W, Huang L, Liu S, Zhong Q, Guo J, Zhang J, Chen T, Shimizu K, Beca F, Blattner M, Vasudevan D, Buckley DL, Qi J, Buser L, Liu P, Inuzuka H, Beck AH, Wang L, Wild PJ, Garraway LA, Rubin MA, Barbieri CE, Wong KK, Muthuswamy SK, Huang J, Chen Y, Bradner JE, Wei W. Nature Medicine. 2017 Sep;23(9):1063-1071.

A curated collection of tissue microarray images and clinical outcome data of prostate cancer patients.

Zhong Q, Guo T, Rechsteiner M, Rüschoff JH, Rupp N, Fankhauser C, Saba K, Mortezavi A, Poyet C, Hermanns T, Zhu Y, Moch H, Aebersold R, Wild PJ. Scientific Data. 2017 Mar 14;4:170014.

TRIM24 Is an Oncogenic Transcriptional Activator in Prostate Cancer.

Groner AC, Cato L, de Tribolet-Hardy J, Bernasocchi T, Janouskova H, Melchers D, Houtman R, Cato ACB, Tschopp P, Gu L, Corsinotti A, Zhong Q, Fankhauser C, Fritz C, Poyet C, Wagner U, Guo T, Aebersold R, Garraway LA, Wild PJ, Theurillat JP, Brown M. Cancer Cell. 2016 Jun 13;29(6):846-858.

Image-based computational quantification and visualization of genetic alterations and tumour heterogeneity.

Zhong Q, Rüschoff JH, Guo T, Gabrani M, Schüffler PJ, Rechsteiner M, Liu Y, Fuchs TJ, Rupp NJ, Fankhauser C, Buhmann JM, Perner S, Poyet C, Blattner M, Soldini D, Moch H, Rubin MA, Noske A, Rüschoff J, Haffner MC, Jochum W, Wild PJ. Scientific Reports. 2016 Apr 7;6:24146.

Positive fibroblast growth factor receptor 3 immunoreactivity is associated with low-grade non-invasive urothelial bladder cancer.

Poyet C, Hermanns T, Zhong Q, Drescher E, Eberli D, Burger M, Hofstaedter F, Hartmann A, Stöhr R, Zwarthoff EC, Sulser T, Wild PJ. Oncology Letter. 2015 Nov;10(5):2753-2760.

KPNA2 is overexpressed in human and mouse endometrial cancers and promotes cellular proliferation.

Ikenberg K, Valtcheva N, Brandt S, Zhong Q, Wong CE, Noske A, Rechsteiner M, Rueschoff JH, Caduff R, Dellas A, Obermann E, Fink D, Fuchs T, Krek W, Moch H, Frew IJ, Wild PJ. Journal of Pathology. 2014 Oct;234(2):239-52.

Unsupervised modeling of cell morphology dynamics for time-lapse microscopy.

Zhong Q, Busetto AG, Fededa JP, Buhmann JM, Gerlich DW. Nature Methods. 2012 May 27;9(7):711-3.

Major Achievements


Lead author on Nature Communications paper demonstrating 'Strategies to enable large-scale proteomics for reproducible research'. Read more.